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NOMENCLATURE

AD = area of the detector face.

Ak(tm) = time analyzer response function (p. 60).

B(_p_) = distribution function for proton interactions (p. 36).

c = velocity of light in vacuum (cm./nsec.).

C(Vp;Vn,ti) = the jitter-smeared flight-time distribution function
(p.38).

D = detector thickness (cm.).

= neutron energy (MeV.).

E = proton energy (MeV.).
P

E E = maximum and minimum possible s-particle energy values.
_max_ Groin

Ee(t, Zp, X,Vn) = the detector geometric response function (p. _2).

G(Vp;Vn_t ) = the physical flight-time distribution function for
detected neutrons (p. 31).

A _ _ p

^ °" ",k, 1 _ _ = unit vectors in the x-y-z and x -y -z coordinate

systems.

J(tj) = the instrumental time-jitter distribution function (p. 38).

k = time analyzer channel number.

K = index of refraction of the neutron detector scintillator.

= normal distance from the x-y-z origin to the face of

the detector (cm.).

Z = the distance from where the proton intersects the face

P of the target to the point of interaction in the target

at PT(X,y,z), (cm.).

Zf = the distance from PT(x,y,z) to a point _n the flat face
of the detecto_ PD(X = O,y',z 7, (cm. •

x



xi

ZD(t ) = the pathlength travelled by the neutron in the detector
expressed in terms of the apparent flight time (cm.).

= the normal distance from the neutron detection point to
C

the phototube cathode (cm.).

_T = the pathlength travelled by the neutron in the target (cm.).

n = the conversion gain of the time analyzer (nsec. per

channel).

N(y,z) : proton beam distribution function (p. }2).

NH, N c = the atomic densities of hydrogen and carbon in the neutron

detector scintillator.

RD = detector radius (cm.).

= target radius (cm.).

S = the target thickness along the beam axis, (S = T sec y)

(cm.).

Sk(Vp;Vn, e ) = the time-channel response function.

T = target thickness (cm.).

t = the measured flight time (nsec.).
m

t = the total physical flight time (nsec.).

t (h) = the pulse-height dependent time slewing introduced by
w

the detector (ns@c.).

t. : the time jitter of the apparatus (nsec.).
J

t = the interval from the time zero defined above to the (p,n)

P interaction point in the target,(nsec.).

t = the flight time between the birth and detection points for
n

the neutron (nsec.).

t = the time required for light to travel from the neutron
C

detection point to the cathode of the phototube (nsec.).

v = neutron velocity (cm./nsec.).
n



xii

v = proton velocity (cm./nsec.).
P

W[tw(h),Vn] = the time-slewing response function (p. 44).

x-y-z = beamcoordinate system.

x -y -z = detector coordinate system.

_,p = cylindrical coordinate of the detector face.

eD = detector efficiency.

_D= spectrometer efficiency.

8 = the angle between the x-axis and _; the detector rotation
angle.

_-W-_ = the target coordinate system.

Zp(Vp;Vn,@) = differential macroscopic neutron production cross section
(cm.-I ).

E(Vn) = macroscopic "efficiency" cross section for neutron
detection (cm.-l).

Eeff = effective macroscopic absorption cross section for neutrons
D in the detector (cm-1).

zeff effective macroscopic absorption cross section for neutronsTN =
in the target (cm.-I ).

_eff = effective macroscopic cross section for proton absorption
TP in the target (cm.-l ).

ZH(EN,Ep) = differential macroscopic cross section for elastic scat-
tering of neutrons of energy EN in hydrogen (cm.-l ).

Ec(n,(_) = differential macroscopic cross section for the production
of alpha particles (cm.-I ).

= effective macroscopic cross section for the cascade
reaction (cm.-l ).

_G = total microscopic cross section for the 12C(n,_Be
reaction.



xiii

= nonelastic microscopic cross section for carbon.
C_ ne

_N = microscopic total cross section for hydrogen.

= standard derivation of the proton beam distribution about the

y-z plane.

_" = 1.18_ sec y, the effective target radius used in the maximum

Y flight-time uncertainty calculations.

_. = the standard derivation of the time jitter distribution.
J

Y = the target rotation angle, Iyl _ _/2.

T2,T I = elements Of target thickness measured along ±_. (_I <- _ -< _2 )"

--b • •

= neutron direction from PT(X,y,z) to PD(x" = O,y ,z ).
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ABSTRACT

Time-channel response functions have been derived for a time-of-

flight spectrometer used to measuremonoenergetic secondary neutrons in

the energy region from 2 to i00 MeV.produced in homogeneousslab targets

from the interactions of monoenergetic charged particles with the target

nuclei. The effects on the flight-time distribution of the target and

detector dimensions and orientation_ the spatial distribution of the beam_

and the pulse-height dependent time slewing (walk) were demonstrated.

Responsefunctions were derived assuming that the neutron emission from

the target is independent of the azimuthal scattering angle and the polar

angle over the angular region subtended by the detector, that neutron

detection maybe treated in the first collision approximation with the

light being emitted uniformly from the interaction point and collected

uniformly from all points in the detector volume, that the beamdimension

perpendicular to the scattering plane can be ignored, and that the

instrumental timing jitter can be approximated by a Gaussian distribution

independent of the pulse height. The time-channel response functions

were obtained from the integral over the time-analyzer response function

of the convolution of the physical flight-time distribution of detected

neutrons and the time-slewing response function. The maximumflight-time

uncertainties, At/t, were derived in terms of the target and detector

dimensions assuming that all dimensions have negligible effect except the

one being evaluated. Comparisonsare madebetween the computeddistri-

butions and those obtained analytically. The expected dominant effects

XV



of the detector thickness are demonstrated along with the dependence of

the target dimensions on the neutron velocity and the angular difference

between the neutron scattering angle and the target rotation angle. The

distributions arising from the target and detector thickness were shown

to be square except for attenuation effects, while those obtained for

large detector radii showed a i/t dependence. The time distribution for

large beam size reflects the beam spatial distribution. The numerical

methods are described, and typical distributions illustrate each con-

tribution to the overall response function. Where multiple scattering

does not dominate, the time integral of the computed response functions

are in good agreement with known detector efficiencies.

xvi
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INTRODUCTION

The determination of neutron energy by time-of-flight is one of

the most direct methods for neutron spectroscopy. The method was origi-

nally conceived for measurementsof neutrons in the electron volt energy

region, but with the development of fast, highly efficient neutron

detectors and improvements in pulse electronic instrumentation, measure-

ments were extended into the region up to 20 MeV.l-_ Recently, flight-

time techniques have been used at even higher energies to measuretarget

yields and differential cross sections for the interactions of 50- to

150-MeV. protons with nuclei. 5

Experiments have been performed at the Harvard Synchrocyclotron

using time-of-flight techniques to measurethe differential cross sec-

tions for the production of neutrons resulting from the interactions of

160-MeV. protons with target nuclei, e As part of the analysis of these

data, this study was initiated to determine the time response function

IF. G. J. Perey, Inelastic Scattering of 14-MeV. Neutrons in

Carbon_ 0xy_en_ and Lithiu_n_ Ph.D. dissertati6n, University of Montreal,
1960.

2G. K. O'Neill, Phys. Rev. _ 1235 (1954).

SA. Adam, G. Palla, and P. Quittner, Acta. Phys. Hung. Tom. XVII

Fasc. 3_ 1964.

_J. Rethneiv et al., Nucl. Inst. Methods _ 273 (1962).

5p. H. Bowen etal., Nucl. Phys. _ 475 (1962).

eR. W. Peelle et al., Neutron Phys. Div. Ann. Progr. Re_t.

Sept. l_ 1962_ ORNL-33 0--_--,p. 286.

1
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for monoenergetic neutrons in the range 2 to i00 MeV. in the experimental

geometry.

I. A SIMPLIFIEDFLIGHT-TIMESPECTROMETER

Figure i showsa simplified time-of-flight spectrometer based on

the one described by Peelle et alY The flight-time of the neutron is

inferred from the time interval between the pulse produced in the zero-

time detector by the incident proton and the pulse from the disc-shaped

NE-21_neutron detector. (Not shown in the diagram are the additional

detectors and instrumentation for charged-particle and gamma-ray

discrimination since it is assumedthat only neutrons interact in the

neutron counter.) A scintillating detector is shownas the zero-time

detector; however, such devices as induction electrodes or the rf signal

from the proton accelerator maybe used. In someapplications, the alpha

or gammaradiation accompanyingthe formation of the neutron is detected

by a counter located near the target to provide the zero-time signal.

The conversion gain of the time analyzer is 0.500 nsec./channel.

II. REVIEWOFNEUTRONFLIGHT-TIMESPECTROSCOPY

The resolution of a time-of-flight spectrometer is determined for

a given neutron energy from the flight-time interval measurement

7R. W. Peelle et al., Differential Cross Sections for the Produc-

tion of Protons in the Reactions of 160-MeV Protons on Complex Nuclei,

ORNL-3887, September 1966.

SNE-213 is a liquid scintillator 1_nufactured by Nuclear

Enterprises, Ltd., Winnipeg, Canada.
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160-MeV PROTONS /_

PHOTOMULTIPLiER
TUBE ASSEMBLY

i

ORNL--DWG 67--686

PHOTOM ULTIPLIER

T_ET ._O_ " N_C,N_T,,_LO_GT;NIC '
ZERO--TIME rl --_ NEUTRON

START_ v MULTICHANNEL _TOP
TIME INTERVAL

ANALYZER TR GGER

BIAS ADJUST}

Figure i. Simplified block diagram of the neutron time-of-flight

spectrometer.
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uncertainty combined with the uncertainty in the flight path. 9 The

timing uncertainty is the combination of the partial uncertainties

arising from the scintillator detector, photomultiplier tubes, timing

circuits, and time analyzer channel width. The flight-path uncertainty

is introduced by the variation in the birth ana detection points within

the target and detector. The relative uncertainty in the measurement of

the energy is twice as large as the combination of all geometric and

timing uncertainties. To achieve optimum energy resolution, the dominant

contributions must be controlled.

A detailed discussion of time-of-flight techniques is given by

Neiler and Good. I° They separate the instrumental resolving time into

three "measurable" functions; the uncertainty in the time-of-origin of

the neutron, the geometry of the detecting medium, and the uncertainties

associated with detection and electronic processes. Each of these fac-

tors requires special consideration by the experimenter. Rybakov and

Siderov II point out the improved resolving power is, in general, obtained

by increasing the flight path. This idealization is not always practical

since the loss in counting rate with distance and the signal to back-

ground ratio for available beam intensity may require short flight paths.

Additionally, scattering from the floor and walls of the experimental area

9The uncertainty is defined here as the predictable spread in

values for a given measurement and not the unknown systematic error in

the mean of the resulting distribution.

io j. H. Neiler and W. M. Good, Fast Neutron Ph_sicsp (Interscience

Publishers, New York, 1963), pp. 509-621.

11B. V. Rybakov and V. A. Siderov, Fast Neutron Spectroscopy,

(Consultants Bureau, Inc., New York, 1960), pp. lOl-109.
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requires more complicated apparatus when using long flight paths, because

of the possibility of detecting neutrons degraded in energy.

Brooks 12 lists four criteria for selecting a detector for flight-

time measurements. These are: time-resolution, detector efficiency,

discrimination against background, and physical considerations, e. g.,

thickness and/or area. The timing resolution that can be achieved depends

on the choice of the scintillator and photomultiplier tube. The large

amplitude range in the light output from the detection event causes a

portion of the amplitude spread to be translated into time spread by the

electronics normally called time walk or slewing. Additionally, the

statistical nature of the cathode photoelectron emission and electron

multiplier introduce timing fluctuation or jitter. As Lundby Is has

shown, the construction of the scintillator-phototube assembly must also

be considered. Detailed studies of the timing resolution have been made

by Colombo, Gatti, and Pignanelli l_ who have related the resolving time

to the variance of the centroid of the current pulse from the phototube

and the pulse-height dependent time-slewing. Graphic results have also

been presented by Gatti and Svelto Is for estimating the time r_solution

for given bias levels as a function of the scintillator decay time

constant and statistical properties of the phototube specified by the

12F. D. Brooks, Proc. Symp. on Neutron Time-of-Flight Methods,

Saclay (1961), p. 403.

lSA. Lundby, Rev. Sci. Instr. 22, 324 (1951).

14S. Colombo, F. Gatti, and M. Pignanelli, Nuovo Cimento 5_ 1739
(1957).

ISE. Gatti and V. Svelto, Nucl. Inst. and Methods 30____213 (1964).
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transit time fluctuations. Several methods of time measurement and

their associated relative timing errors are discussed in detail by

Neiler and Good and Rybakov and Siderov.

At neutron energies over 0.5 MeV., detection is usually accom-

plished with n-p scattering using organic scintillators. Organic scintil-

lators are characterized by fast decay times and relatively high effi-

ciency. Birks Is has investigated the basic processes of scintillation

and has derived analytic relationships between the fast and slow light

components of the decay process while Batchelor et al. 17 and Verbinski

et al. Is have separately measured the response functions of organic

scintillators for fast neutrons and have established the relationships

between the light output and the energy for electrons, protons, alpha

particles, and carbon recoils. Analytic methods for determining the de-

tection efficiency of organic phosphors to neutrons in the energy region

below 20 MeV. have been suggested by Kurz 19 and by Schuttler s° and abso-

lute efficiency values have been reported by Love and his coworkers. 21

16j. B. Birks_ IRE Transactions on Nuclear Sciencep NS-7_ 2 (1960).

_TR. Batchelor et al., Nucl. Instr. Methods _ 20 (1962).

18V. V. Verbinski et al._ The Response of Some Organic Scintillators

to Fast Neutrons# Shielding Division Report, ANS-SD-2, December 1964.

iSR. J. Kurz, A 70_/V0_0 Fortran II Program to Compute the Neutron-

Detection Efficiency of Plastic Scintillator for Neutron Ener6ies From

1 tO 300 MeV., UCRL-11339, March 1964.

2OR. S. Schuttler, Efficiency of 0r6anic Scintillators to Fast

Neutron% 0RNL-3888, July 1966.

21T. A. Love et al., Absolute Efficiency Measurements of NE-213

0r6anic Phosphors for Detecting 14.4- and 2.6-MeV. Neutrons_ 0RNL-3893,

September 1966.



Recalling the detector criteria of Brooks, one must finally consider

the physical dimensions of the detector. For thin detectors in which the

attenuation is minimal, the efficiency is proportional to the detector

thickness. For detectors of thicknesses comparable to the fast neutron

meanfree path, the proportionality breaks down, e. g., 7 cm. at 2 MeV.

Grismore and Parkinson2s have investigated the relationship between the

resolving power and the neutron energy for flight paths of 5.3 and 15 m.

and detector thicknesses of 2 and 8 cm. They have shownthat for 6-MeV.

neutrons produced by 160(d,n) reactiorsand 3 nsec. time resolution, the

geometric factors which limit the resolving power are just equal to the

time resolution whena 6-cm. detector and a 5-cm. thick gas target are

used. Eybakov and Siderov give graphic results for the neutron energy

and flight distance required to obtained 3%and 1%energy resolution for

a 5-cm. thick detector for At = 3 nsec.

Typical factors which determine the resolution time have been

summarized in a paper by Smith2s for a time-of-flight spectrometer used

to study neutrons with energies between 2 and 4 MeV.

III. PURPOSEOFTHETHESISANDPROPOSEDWORK

The purpose of this thesis is to calculate the expected neutron

flight-time distributions for monoenergetic neutrons resulting from the

bombardmentof homogeneoustargets by monoenergetic protons and to study

_2R. Grismore and W. C. Parkinson, Rev. Sci. Instr. 28_ 245 (1957).

23R. V. Smith, Conference on Neutron Physics by Time-of-Fli_ht,

Gatlinburg, Tennessee, 1956, p. 103.



the behavior of these distributions for variations in the geometric

parameters of the be_n, target_ and detector.

Several restrictions have, however_ been imposedon the design of

the model spectrometer which is used as well as the physical phenomena

leading to birth and detection of the neutrons:

1. The target and detector are right-circular cylinders mounted so

that the particles first strike the flat surfaces.

2. The calculations are madefor 160-MeV. protons whose specific

energy loss in the target is approximated by its true value

at the center of the target. Multiple scattering of the protons

or secondary neutrons in the target is ignored. The proton

density distribution is approximated either by a bivariate normal

frequency function with a diameter muchless than the target

diameter, or as uniform over the target.

3. Neutron emission from the target is assumedindependent of the

azimuthal scattering angle_ as well as independent of the polar

angle over the angular range subtended by the detector. No

interactions occur in the region between the target and detector.

4. Neutron detection is restricted to the first collision approxima-

tion and the resulting light is emitted from the interaction

point and collected uniformly from all points in the detector

volume. Light transit times are obtained from the normal dis-

tance to a flat photocathode with the scintillator coupled

directly to the multiplier tube. Phototube delays are taken as

independent of the position where the light strikes the photo-

cathode.



5- Timing jitter was represented by a normal frequency function with

standard deviation independent of pulse height from the

scintillation detector.

For various secondary neutron energies the analysis will showthe

effects on the flight-time distribution of:

i. the angle between the beamdirection and the target-detector axis_

2. the target thickness and orientation_ including consideration of

the energy loss of the incident protons_

3. the detector dimensions_

4. the spatial distribution of the proton beam_

5. the timing fluctuations between the flight time and the observed

"machine" time_ and

6. the time-slewing and analyzer response.



CHAPTERII

COORDINATESYSTEMS

I. SPACECOORDINATES

Figure 2 shows the target and detector in the typical experimental

configuration treated in the calculations which follow. A cartesian

coordinate system, x-y-z, is constructed such that the positive direction

of the x-axis is along the direction of the proton beamwith the x-y plane

containing the center of the detector and the target normal. The target

coordinate system, _-_-_, is constructed so that the vertex of the _-_-_

system is in conjunction with the origin of x-y-z with _ and _ constrained

to rotate in the x-y plane and _ along the target normal. The angle of

rotation, Y, is limited to values defined by Iyl < _/2. The target

thickness, T, is measuredalong _ such that T2 - TI = T and

r I _<_ < T2 II-i

for all values of _ in the target.

The position of the neutron detector is given by I_I _ L and e,

where L is a vector in the x-y plane from the origin to the face of the

detector and normal to it, and e is the angle between the x-axis and L.

The detector coordinate system, x•-y -z , is constructed within

the detector so that the origin of x•-y•-z" is at the terminus of _ with

the positive direction of the x•-axis along the axis of the detector.

i0
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Transformation from the primed system to the unprimed system is accomplished

using the expressions

x = x" cose - y sine +

• s

y = y cosO+ x sinO

Z = Z

II-2

The distance from where the proton intersects the face of the

target to the point of interaction in the target, PT(X,y, z, ), is

Zp = x + y tany - TI secy 11-3

Zf is the distance from PT(X,y,z) to a point on the flat face of the

detector, PD(X" = O, y',z') and ZD is the distance travelled by the

neutron from PD(X" = O, y',z') to the point of the nuclear reaction

leading to detection. The light is considered to travel the normal dis-

tance Z from the detection point to the phototube cathode.
C

II. TIME COORDINATES

In this study, the arbitrary convention is adopted that the zero

of time for a given incident proton is at the instant it would have

passed through the plane x = 0 if the target were absent. Apparatus delays,

including those of the phototube, are ignored. These conventions do not

affect the generality of the results.
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If n is the conversion gain of the time analyzer in nanoseconds

per channel_ then the measured flight time t for an event is recorded
m

in channel k if

n(k - i/2) _ t _ n(k + 1/2)
m

11-4

t is given by
m

tm = t + t (h) +t. = t + t + t + t (h) + t.
w j p n c w 0

11-5

where

t is the total physical flight time_

t (h) is the pulse-height dependent time slewing introduced by
w

the detector,

t. is the time jitter of the apparatus,
J

t is the interval from the time zero defined above to the (p_n)
P

interaction point in the target,

tn is the flight time between the birth and detection points for

the neutron_

t is the time required for light to travel from the neutron
c

detection point to the cathode of the phototube.



CHAPTERIII

MAXIMUMFLIGHT-TIMEUNCERTAINTIES

The time-of-flight of a neutron is related to the energy and the

flight path in the nonrelativistic approximation by

t(nsec.) - 72.3 L(meters

E_/2 (MeV.)

III-1

and it follows directly that the relative resolution time for a given AL

is simply (At/t) = (AL/L)_ where AL is introduced by the flight-path

uncertainty between the birth and detection points within the target and

detector. We shall calculate the maximum relative flight-time uncertain-

ties At/t" in terms of the target and detector dimensions assuming that all

dimensions have negligible effect except the one being evaluated; so that

in the practical case the various effects would have to be combined. The

convention will be adopted in which At is the difference between the

maximum and minimum flight times while t = L/Vn_ where L is the distance

from the center of the target to the center of the detector face and vn

is the neutron velocity.

I. DETECTOR EFFECTS

For the detector geometry shown in inset A of Figure 3, in which

the radius produces the dominant flight-path variation; the maximum and

minimum neutron flight times are given by

14
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uniformly illuminates the target.
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t
max

1/2

n

III-2

and

tmi n = L/v n , III-3

where RD is the detector radius. Expanding III-2 in a binomial series and

subtracting III-3 yields the flight-time uncertainty At. Division by t

gives the maximum flight-time resolution as

III-4

In typical applications_ R_L < 0.i_ and all terms beyond the first may be

ignored since their total relative contribution to the resolution time is

less than l_ s .

Inset B of Figure 3 shows the geometry for a "thick" detector.

Considering the effects of the detector thickness D, the maximum variation

in the flight time is

At - D ED . III-5
V C
n
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The second term on the right-hand side of the equation gives the correction

for the light transit time through the scintillator medium under the

simplifying assumptions given in the introduction. K is the index of

refraction of the scintillator and c is the velocity of light in vacuum.

Dividing both sides of III-5 by the nominal flight time t we obtain the

maximum flight time resolution for the axial dimension of the detector as

III-6

Figure 4 shows the results of plotting the time resolution as a

function of R_L and D/L. Equation 111-6 is plotted for two values of vn

corresponding to 2- and IO0-MeV. neutrons. These data show the expected

dominant effect of the detector thickness.

It is interesting to note the relationship between RD and D for a

detector of constant volume and minimum relative flight-time uncertainty.

The spectrometer efficiency UD is given by the product of the detector

efficiency_ eD_ and the solid angle subtended at the target by the

detector, eD is defined here as the ratio of the number of neutrons

detected to the total number of neutrons incident on the face of the

detector. Ignoring attenuation in the scintillator, eD _ Z(Vn)D , where

Z(Vn) is the macroscopic efficiency cross section for detection in the

scintillator. Then,

_D = CD " _ _ _'(vn ) III-7
L_ T_
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where A D is the area of the detector face. In this approximation _D is

directly proportional to the detector volume. The expression for the

maximum resolving time of detector in which both RD and D are considered is

m=* -- + --m

t L \ 2L2

111-8

which is correct to the second order in %1 L and DIL. Setting _ = VOLImD

and taking the derivative of 111-8 with respect to D_ we get the thickness

for which (At/t) is a minimum, under the constraint of constant volume

(given spectrometer efficiency), or

jVOL
111-9

It follows from 111-9 that for minimum At/t, RD and D are related by

= 2DL - . III-i0

Equation III-lO is the relationship for which the radial and axial

dimension contribute equally to At/t. Equations 111-7 through 111-9 yield

the smallest maximum flight-time resolution as a function of the spectrom-

eter efficiency to be



2O

7 = '= L 7, (v n ) -
III-ll

It should be noted_ however_ that the relative dimensions specified by

these equations will lead to poor angular resolution and/or inefficient

light collection as one increases _D" In practical applications RD is

therefore smaller than the value suggested by Equation llI-lO, so the

thickness generally introduces the significant detector contribution to

the geometric time resolution.

II. TARGET EFFECTS

The determination of the maximum flight-time resolution arising

from the target dimensions requires a more detailed analysis. The flight-

time uncertainties are a function of the rotation angles of the target and

detector and the proton transit time through the target.

Inset C of Figure 3 shows the thick target geometry. The protons

are incident on the target along the x-axis in a line beam. The target

thickness along the beam axis is S = T secy where Y is the rotation angle

of the target and T is the target thickness. The extreme flight-times

which arise for a given target-detector configuration depend on the

particle velocity ratio Vn/V p and the detector rotation angle e. For

forward scattering angles and Vn << Vp, the longest and shortest flight-

times are obtained at the target edges as shown in the figure. However_

at given detector angles and increased neutron velocity, the maximum and

minimum flight-times may reverse because the proton transit time through
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the target now comprises a significant fraction of the total flight time

along a given path. In all cases when8 > 90_ corresponding to backward

scattering, the maximumflight time is the sumof the proton transit time

through the target and the neutron flight time along the longest path from

the target to the detector; this value is always greater than the neutron

flight time along the shortest path to the detector measuredfrom the

target edge.

Tha maximumand minimumflight times measuredfrom the target edges

are given with the aid of the cosine law as

te : _--l (L2 + Se/4 + SL cos@)I/2 2vS III-12
n p

and

s__
tl = vi__ (Le + Se/4 _ SL cosS) I/2 + 2v ' III-13

n p

where 8 is the detector rotation angle. S/Vp is the proton transit time

through the target when v is the proton velocity. Expanding the square-
P

root terms in 111-12 and 111-13 and following procedures outlined above,

we obtain the result that

(At/t)s -_ IS-L(cos8 - Vn/Vp) I 111-14

Equation 111-14 is accurate through second order in S/L.
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Depending on the detector rotation angle and the particle velocity

ratio, given target-detector configurations arise where the maximumand

minimumflight times given by Equations III-12 and III-13 are nearly equal

For these cases, the minimumflight time occurs for interaction points

within the target rather than at either target edge. Then, the total flight

time is given by

x + 1 (T_+ _ _ _ cose)i/2t(x): _- _-
p n

III-15

where t(x) is the flight time measured from any point on x. Taking the

derivative of III-15 with respect to x and solving for x/L when dt(x)/dx = O,

one obtains

v

(_) = n
t=min (ve _ ven )1/2

P

sin8 + cos8 ; IIl-16

the value of (x/L) for which t(x) is a minimum provided v _ v . When
p n

Vn = Vp, there is a minimum at 8 = 0 independent of x.

Figure 5 shows the curves of (x/L)t=min versus 8 for 2- and IO0-MeV.

neutrons. These data give the range of values of 8 for which Equation

III-14 is an invalid approximation for (At/t). For the range 770-88 °,

there is a minimum within the target when S/L = 0.i. Over this range of

angles where t (x) < min (tl, t_ ) Equation III-14 should not be used. The

minimum flight time is then deZermined from Equation III-15 using the

values of (x/L)t=min and 8 obtained from Figure 5 or Equation III-16. The
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relative resolution time (At/t) is then calculated using the relation

[max(t13t2) - t(x)]/t. For the case at e given by (x/L)t=min = O, the

flight-time resolution is simply

S - 2-_ cose - + _L 2
III-17

Figure 6 shows the geometric induced flight-time resolution plotted

as a function of 8 for S/L = 0.i and 0.2 for 2- and IO0-MeV. neutrons.

The solid portion of each curve was obtained using Equation 111-14. The

dotted portion was obtained using Equation 111-15; the range of angles

being determined from Equation 111-16 and Figure 5 for x/L just equal to

the value at the target edges.

The calculation of the effects on the flight-time resolution arising

from the target radius follows similar arguments. Inset D of Figure 3

shows the thin target configuration in which the radial dimension introduces

the dominant flight-path uncertainty. In this case, the proton beam is

taken as uniformly distributed over the target radius.

Ignoring multiple scattering of the protons in the target, the

"effective" target radius corresponds to the radial dimension of the beam,

which in most applications is smaller than the target radius. If the

cartesian components of the beam are studied separately_ we observe that

the z-component of the beam produces a AL which is independent of the

detector rotation angle, 8. The calculation of the maximum timing un-

certainties from the z-component yields a solution similar to
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Equation III-4 obtained for the detector radius. The uncertainties are

of second order in _L. The y-component of the beam, on the other hand_

produces a AL which is dependent on e and y and contains first order terms

in R_L. On the generally valid assumption that the beam radius is

smaller than the detector radius_ the maximum flight-time uncertainties

can be calculated in the x-y plane with no practical loss in generality.

For those cases where the beam radius is comparable to the detector

radius, the contribution from the z-component can be added in quadrature

with that obtained for the y-component.

When the maximum and minimum flight times occur at the target

edges, we obtain the expressions for the extremum flight times from the

cosine law as

....1 [L2 + _T 2RTL sin(8 y)]l/2 R T siny III-18t2 v v
n p

and

)]1/2 RT sin_tl = v--i[L2 + _T + ?_R_ sin(8 - _ + v III-19

n p

where R T is the target radius. Expanding the square-root terms and

dividing the difference It2 - _I by the nominal flight time t yields

i [s vin(8 - Y) + --n-n si
V

P

111-20

I
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which is accurate through second order in _L. Equation III-20 is an

approximation to the flight-time resolution which may be used provided

the target edges yield the maximum and minimum flight times. For the

other case_ the actual minimum flight time exists for a point within the

target.

For neutrons born at a point _ in the target_ the flight time is

given by

t(_) = _--i[L_ + U_ _ 2_L sin(e - y)]i/2 - U vSinY

n p

III-21

Taking the derivative of 111-21 with respect to _ and solving for (u/L)

when [dt(_)/du] = O, we obtain the value of (_/L)t=min for which t(_) is

a minimum. The result is

v sinY cos(8 - Y)

= n
(% _ sin2y _n)i/2 + sin(8 - Y)t=min

III-22

The equations which describe the target radius dependent time

resolution are a function of the rotation angles O and y as well as the

particle velocity ratio. A typical case is discussed here. Figure 7

shows the results of plotting (_/L)t=min as a function of O for 2-MeV.

neutrons. The target is rotated at 30 ° to the incident beam. Assuming

R_L = 0.i_ we observe from Figure 7 that for the range of angles from

28 ° to 39 °, the minimum is within the target and Equation 111-20 should
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not be used to evaluate At/t. Instead the minimum flight time is evaluated

using Equation 111-21 when t(_) < min(tl,t 2 ) using the values of _/L and e

from Figure 7 for the given target rotation angle y. If t(u) g min(tl,t 2 )

Equation III-21 is used to compute At/t where At/t = [max(tl,t ) - t(_)]/t.
2

For the case at @ when (_/L)t=min = O, the relative timing uncertainty is

given by

v lAt % in(@ y ) n siny + +
_° -- -- -- -- ooo

% T, v  ITj
P

III-23

The results of these calculations are illustrated in Figure 8. The solid

portion of the curve is obtained from Equation III-20 and the dashed

portion using Equation 111-21; the values for @ and _/L being determined

from Figure 7.
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CHAPTER IV

THE TIME CHANNEL RESPONSE FUNCTION

The simplified spectrometer defined in Chapter I is analyzed in terms

of the time-channel response function Sk(Vp;Vn, e)_ the probability per MeV.

of neutron energy per incident proton that a neutron of speed v produced
n

in the target is detected in channel k of the multichannel-time analyzer.

The time-channel response function is derived from the convolution of the

flight-time distribution function and the time slewing response function

and the integral over the analyzer sensitivity function. Each of these

functions will be discussed in detail.

Sk includes the "response" of the target through its differential

neutron production cross section _Vp;Vn, 8). The sum of Sk over all time

channels is related to the counter efficiency by

AD

k Sk(vp;vn' e) _--CD(V n) L_- _p(Vp;Vn, e)Sef f
IV-I

where Sef f is the target thickness along the baam direction taking into

account the beam attenuation.

I. THE PHYSICAL FLIGHT-TIME DISTRIBUTION OF DETECTED

NEUTRONS AVERAGED OVER THE TARGET

The flight-time distribution G is calculated here for neutrons

which are born in the target and interact in the detector in terms of the

31
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physical flight time of Equation II-5. The distribution function is

obtained by defining the geometric response function for neutron inter-

action events in the detector as a function of the neutron flight time

from a point in the target and then summingover the target volume. The

flight-time density function of detected neutrons is the probability per

incident proton of speed v per MeV. of neutron energy per nsec. that aP
secondary neutron of speed v has an apparent flight time t_ and isn

given by

G(Vp;Vn,t ) dt : dt _ff N(y,z) B(_p,_) Ee(t, Zp,X,Vn) dxdydz IV-2

where dxdydz is an element of target volume and

N(y,z) dydz = the probability that a beamparticle has a
displacement from the beamaxis within dy at
y and dz at z_

B(_p,_) dx = the probability per unit solid angle per MeV. of
neutron energy that the proton interacts in the
target within dx at a penetration Zp = x + y ×
tanY - TI sec Y to produc_ a neutron which is
emitted in the direction _ and

Ee(t,%p,X,Vn) dt = the detector geometric response function: The
probability that a neutron of velocity vn born
at x_y in the target and emitted in a unit solid
angle toward the detector is detected within dt
at t.

The Detector Geometric Response F_nction

The detector geometric response function is given by

Ee(t,_p,X, Vn) dt : dt _ l(%%p,X, Vn#_ ) d_

AD

IV-3
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where the integration is performed over the area of the detector face_ A D.

We assume for all cases that the y" and z" dimension of the detector front

surface are greater than those of the beam intersection on the target.

d_ = [(i" • _)/£_]dA D is the element of solid angle subtended by an

element of detector front surface at the interaction point in the target

PT(X,y,z _ Zf is the distance from PT to face of the detector and i is

the unit vector along the detector axis x'. The integrand_ the probability

that a neutron of velocity v born in the target at x_y and emitted inn

the direction _ is detected within dt at t_ is given by

I(t, Zp, X, Vn,_) dt

exp(-Z_ f Z_Z(v n) exp[-ED ff _D(t)] d_D(t) ;

0

provided the neutron

interacts at a detector

penetration distance

%D(t) along the direc-

tion _ IV-4

for ZD(t ) inconsistent
with neutron interactions

in the detector

where

zeff effective macroscopic absorption cross section forTN =
neutrons in the target_

_.(Vn) = macroscopic "efficiency" cross section for neutron

detection_

Eeff

D = effective macroscopic absorption cross section for
neutrons in the detector_

v = neutron velocity,
n

_T = pathlength traveled by the neutron in the target_
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%D(t) = pathlength traveled by the neutron in the detector
expressed in terms of the apparent flight time_

dZD(t ) = differential distance traveled by the neutron in time
dr.

The shape of l(t,%p,X, Vn,_) in time is just an exponential truncated at

the time limits corresponding to the time at which the neutron would pass

through the front and rear surfaces of the detector. The combination of

these exponentially shaped distributions for various points on the

detector surface complicates the original simple shape.

Once %D has been written as an explicit function of t_ Equation

IV-3 gives the distribution of neutron flight times summed over the

detector volume; the volume element in the detector having been defined

in terms of dAD and vndt.

The distance traveled by the neutron from its birth point in the

target PT(X_y,z)_ _ to the point of detection PD is tn nV. With the aid of

Equation II-5 with tj = tw(h ) = O, we can write

t v = %f + %D(t) = (t - t - t _n _-5nn c p

where Zf is the distance traveled by the neutron from PT to a point on

the face of the detector and ZD(t) is the distance from the detector

face to the point of detection PD" It has been assumed that the light

from the neutron interactions is normally incident on the photocathode.

Then the light transit time from the point of neutron interaction to

the photocathode is

tc = cK [D - %D(i _ • _)] , IV-6
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where (i" • _) is the angle at which the neutron strikes the face of the

detector. Substituting Equation IV-6 into Equation IV-5 and solving for

ZD_ yields the result

It - t - (KOlc)]vn - _f
_D (t) - _ A ' IV-7

and

v dt

dZD(t) = n _ IV-7A
A

where A = [i - (KVnlC)(i" • _)]. As the denominator goes to zero, the

only problems introduced are numerical and I is nonzero only over a small

time band.

The proton transit time through the target_ tp_ is obtained

assuming the time reference is at x = 0 with the target imagined to be

absent. Then if dE/dx is considered constant through the target_

xtp --__-- +
P PP

IV-8

where E is the proton energy (MeV.) and -(_I_) is the incremental
P

energy loss for protons in the target material. -(dE/dx) is a positive

number. The derivation of t is given in Appendix A_ while Appendix B
P

contains the detailed analysis leading to expressions for (i" • l_), _f,
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Integrals Over the Target Volume

To obtain the complete flight-time distribution given by Equation

IV-2, we must now integrate over the target volume taking into consider-

ation all possibilities for proton interactions. In that equation,

0

x, y within target

x, y outside target

Iv-9

where

Zp(V ;Vn,_)_ _ : the differential cross-sectio_ per MeV. per unit
solid angle in the direction _ for the production

of neutrons of speed Vn,

_eff the effective cross section for absorption of
TP =

protons in the target.

Since the chance of emission of the neutron is taken to be independent of

the azimuthal angle, _p(Vp;Vn,_ ) reduces to Ep(Vp;Vn,@) , where @ is the

angle of neutron emission relative to the beam axis. If _p(Vp;Vn,@) does

not vary too rapidly with ® or Vp, it may also be considered constant in

the integral for G. [Experiments are normally designed to make Zp(yp;Vn, G)

sufficiently constant over the detector face so that _p(®) _ _p(e)].

It has been shown in Chapter IIl that the z-component of the beam

typically introduces negligible flight-path variations. Based on these

results, Ee(t, Zp, X, Vn) and B(Zp,_) were considered independent of z, and

since N(y, z) is the only term in which z is contained explicitly, it is

integrated immediately over all values of z with the result that
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dy_ N(y,z)dz = N(y)_ . IV-lO

N(y) is approximated by a gaussian distribution with mean value equal to

zero, given by

N(y) = _ e(-1/2)(y/,_ IV-II

where

= the standard deviation of the proton beam distribution about

the x-z plane.

II. THE EFFECTS OF INSTRUMENTAL TIME JITTER

There is a spread in the duration of the time intervals between

the production of photoelectrons resulting from the neutron interaction

in the detector and the time when the amplitude of the output pulse

triggers the electronic circuitry. This time spread depends on several

factors including the energy left behind by the particle in the scintil-

lator, the conversion efficiency of the scintillator, and the statistical

variations in the cathode photoelectron emission and in the electron

multiplier tube. The magnitude of the timing jitter depends on the

fluctuations in all of these causes as well as the amplitude of the pulses

introduced by the light output in the detection event. The amplitude

variations are treated in Section IV of this chapter and the time jitter

is handled separately under the assumption that it is independent of

amplitude variations in the output pulse.
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Included in the jitter distribution are the fluctuations arising

from the distribution of the protons in time and the time variations

introduced by the zero-time detector. These uncertainties, along with

those described above 3 are here lumped into one constant source of

instrumental time jitter.

The jitter manifests itself in a broadening of the apparent flight-

time distribution. The causes of jitter arise randomly in time so that

the time-jitter distribution can be approximated by a normal frequency

function with zero mean jitter time and constant standard deviation _j,

given by

: i----e(-1/2)(t j Iv-12
J(tj) %_2-_

The jitter-smeared apparent flight time t. for an event is
l

t. = t + t. IV-13
l j

Then_ the jitter-smeared flight-time distribution function is obtained by

the convolution of Equation IV-12 with IV-2:

dt i C(Vp;Vn, t i) : dt i _ G(Vp;Vn, t) J(t i - t) dt .
IV-14

Completing the integration of Equation IV-14 proceeds as follows.

Equation IV-7 is inserted into Equation IV-4 and all terms containing the
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physical flight time t are factored out. These terms, along with Equation

IV-12, are placed inside the integral sign in Equation IV-14. Completing

the square of the terms in t and integrating over all values of t yields

the following result

eff

dt C dt v E(Vn) _ff N(y) B(%p,_) e T/Ai (Vp;Vn_ti) = i n Ep(Vp;Vn_0)

× exp[(ED ff/A) (%f + KDVn/C + t vp n)] IV-15

where

A = i - (KVn/C)(i" • _) IV-15i

and

• - a_ _eff Vn/A . IV-15B= t I j ED

tmi n and t are the minimum and maximum physical flight times t alongmshc

the direction _ to the front surface and point of exit of the detector.

tmi n and tma x are given by

tmi n = t + %f/v n +KD/cP
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and

zf / i" • IV-17= + (D Vntma x t + /v nP

from Equations IV-5 through IV-7. The error function used here is defined

by

%2 _2 _l

1 _ e -x_/2a2 dx = erf m_ erf

a_ _i a a

IV-18

In practical calculationsj the quantity C(Vp;Vn, t i)/_p(vp;vn, 8) is

evaluated since the purpose is to calculate _p(Vp;Vn,@) from experimental

re sult s.

III. RELATIONS LEADING TO THE DETECTOR EFFICIENCY

The integral of Equation IV-14 over the jitter-smeared flight time

t.1 should yield the efficiency of the detector eD times the number _ of

neutrons which strike the face of the detector, or

_t i dti ft dt G(Vp]Vn, t ) J(t i - t) _ CD_
Iv-m9

where

= Zp(Vp;Vn, 8 ) Tef f ,IAD d_
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Teff is the effective target thickness given by

eff [ eff 7

Teff (1/ZTp) L± -_TP S i= - e j _ IV-20

if the neutron attenuation in the target is ignored. In this section,

we shall perform the integration indicated in Equation IV-19 in order to

prove the validity of the relationship.

Changing the order of integration in Equation IV-19 and performing

the inner integration yields the result

ft G(Vp;Vn't) dt ? CD_ . IV-21

It is possible to perform the integration in this manner since J(tj) is

normalized to unity. The convolution of any function with one of unit

area yields a function with the same area as that under the original

function.

In the assumption that no neutron attenuation occurs in the target_

Equation IV-4 reduces to

dt I" (t, Zp, X, Vn,_ ) = Z(Vn) exp[-_ZD(t)] dZD(t) . IV-22

Since this is the only equation in which t is contained explicitly, it

may be integrated over t immediately. Substituting _D(t) and d_D(t )

from Equations IV-7 and IV-7A into IV-22 and integrating from t to t
min max
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Weobtain the result that

t
, mSD(

J
t
min

I" (t,%p,X, Vn,_) dt

T'(Vn) E1 _- D_/I x' Vn'_)_D - exp _D _., - =- eD(%p'
'\ i

IV-23

where tmi n and tmax are given by Equations IV-16 and IV-17, respectively,

and D/(I" • _) is the distance traveled along the direction _ by the

neutron in passage through the detector.

Now, with the aid of Equation lqf-2, we can write

¢D N = fy fx(y)fA D eD(%p'X'Vn'_) N(y) B(%p,_)d_dxdy
IV-24

eD(£p,X, Vn,_ ) is a function of the coordinates of the neutron birth

point in the target and the direction of emission of the neutron. If

the direction of emission of the neutron is such that it passes through

the detector front surface, then Equation IV-4 is nonzero. Further, the

spectrometer efficiency, given by the product of the detector efficiency

eD and the element of solid angle subtended by the detector, does not

depend strongly on the neutron birth coordinates. Then Equation IV-24

may be integrated as follows
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_AD _D(Vn'_ )d_ target

iv -25

where < ._ CD(vn_ ) d_ target is the average spectrometer efficiency

weighted by the interaction density in the target. In this analysis,

cD is considered essentially constant over the detector area_ so that

fAD CD(Vn,_) d_)target

eD(Vn_ = . IV-26
AO

O

is just the average value of the detector efficiency and _o =

_A_ _ is the element of solid angle measured relative to the origin of
IJ

the target coordinate system. Now_ we can write

eD(Vn) A_ ° _ .Ix(y ) N(y) B(_p,e) dxdy - CD_ IV-27Y

since Ep(Vp;Vn,_ ) _ Ep(Vp;Vn, e). The integration in Equation IV-24 has

now been greatly simplified.
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and

The limits of integration for the x and y integrals are given by

rI secY - y tanY _ x _ _ secY - y tany Iv-28

-2.5_ < y -< 2.5_ IV-29

Introducing IV-9 and IV-II into IV-27 and completing the integration

over the specified limits_ we obtain

eff__

eff ( -_TP S)_p(Vp;Vn_O) (i/_Tp) 1 - e AQ0 = eD_ . IV-3O

Then, the integral of Equation IV-19 over the physical flight time yields

the average value of the detector efficiency weighted over the target.

IV. THE TIME-SLEWING RESPONSE FUNCTIONS

The large amplitude range in the light output from the neutron

interaction causes a portion of the pulse amplitude spread tobe trans-

lated into a timing spread which is called slewing or walk. The time-

slewing response function W[tw(h)_Vn] dtw(h ) is defined as the probability

that a neutron of velocity vn produces an amplitude-dependent slewing

time within dt (h) at t (h). The response function is normalized such
w w

that the integral over all values of tw(h ) is unity,

_tw(h) W[tw(h),v n] dtw(h ) : i .

IV-31



45

In order to determine the slewing response function_ the pulse-

height spectrum resulting from the neutron interactions in the detector

and the time-slewing curve must be known. The pulse-height spectrum is

calculated using a first collision approximation to obtain the differ-

ential macroscopic cross section. Conversion of these data to the

corresponding pulse-height spectrum is accomplished using the fast-light

output curves for charged-particle interactions in the detector. The

slewing curve which gives the time shift in terms of the ratio of the

pulse height to the amplitude of the output pulse which just triggers

the time analyzer_ was taken directly from the data of Peelle et al. 24

Derivation of the Pulse-Height Spectrum

Neutron detection is achieved in organic scintillators by the

elastic scattering on hydrogen nuclei and the nonelastic interactions

with carbon nuclei. Both give energetic charged particles which produce

light in the scintillator.

The cross sections for these reactions will be derived using the

method and notation of Schuttler, 2s and the resulting energy spectra

converted to pulse-height spectra in light-output units using the fast

light-output curves of both Schuttler and Birks. 2s

24R. W. Peelle et al.________Differential Cross Sections for the

Production of Protons in the Reactions of 160-MeV. Protons on Complex

Nuclei_ ORNL-3887_ September 1966.

26R. S. Schuttler, Efficiency of Organic Scintillators to Fast

Neutrons; ORNL-3888_ July 1966.

2sj. B. Birks, Proc. Phys. Soc. A64_._ 74 (1952).
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In this analysis, we are assuming that the charged particles from

the hydrogen reactions are totally absorbed in the scintillator. For

example, for 2.54-cm. thick detectors, the assumption is valid for

neutrons up to 14.5 MeV. where the maximum range of the charged particle

is 0.23 cm. For 50-MeV. neutrons, however, the range of the charged

particle is 2.20 cm. which is comparable with the detector thickness_

and the resulting spectrum is in error.

Hydrogen scattering. In the energy region below i0 MeV., (n,p)

scattering is isotropic in the center-of-mass system and all proton

energies from _ down to zero are equally possible after a single scat-

tering. At neutron energies greater than i0 MeV., the scattering becomes

increasingly anisotropic.

The energy differential macroscopic cross section for elastic

scattering of a neutron of energy _ in hydrogen is given by

= cosO) Iv-32

where _(EN, e ) is the laboratory microscopic differential cross section for

scattering at angle e and NH is the atomic density of hydrogen in the

scintillator. _(e) is approximated using semiempirical formulae due to

Gammel. s7 The relationship between E and e is obtained from classical
P

kinematics as

sT j. L. Gazmel, Fast Neutron Physics, Part II, (Interscience

Publishers, New York, 1963)_ p. 2209.
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E 1p -- (1 - cos2e) = sin . n -33

The energy differential cross section is obtained for values of e

in the range 0° _ e _ 90 ° . Equation IV-33 yields the value of E which
P

when replaced in IV-32 gives the value of EH(EN_Ep).

Figure 9_taken directly from the work of Schuttler_ 2s shows the

proton-energy differential macroscopic cross section for elastic scattering

on hydrogen plotted as a function of the proton energy for several values

of the neutron energy.

Reactions in carbon. At neutron energies greater than lO MeV._

the probability for nonelastic scattering with carbon becomes important.

The most important ground state reactions which compose the nonelastic

cross sections and which give charged particles are

i. C(n,n')C* leading to C*_ 3_; Q _ -7.8 MeV.,

2. 12C(n,p)12B; Q = -12.6 MeV. and 1_C(n, np)_iB; Q = -18.4 MeV.,

3. I_C(n,_Be; Q = -5-7 MeV.

The cross sections for the reactions described in i and 2 above have been
m

calculated by Schuttler _9 using an adaptation of the Monte Carlo code of

Bertini s° which is based on the intranuclear cascade model. Schuttler's

analysis did not produce ground state reactions (n,_) leading to 9Be.

_SSchuttler_ op. cit._ p. 21.

29Schuttler, op. cit._ p. 28.

S°H. Bertini, Phys. Rev. _ 1801 (1963)] alsoyonte[ CarloCalculations on Intranuclear Casca-_es_ ORNL-3383 (1963
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2-0t-058-t0t2R

0.2 0.5 t 2 5 I0 2o 5o _00

Ep (MeV)

Figure 9. Proton energy differential macroscopic cross section

for elastic scattering on hydrogen. The values of 2_(EN;E p) were

computed with the hyrodgen density in the scintillator taken as

0.0452 × lO_4 atoms/cm, s
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We shall adopt his method for deriving the differential cross section

for this reaction.

It is assumed that the reaction products from the (n,_) reaction

are isotropic in the center-of-mass system. The differential macroscopic

cross section for the production of alpha particles is then given by

7'C(n,o_) (EN,Eoc) = {i c(_O_ (Ec_r_x- E min)-l;

E <E _<E
Groin (_ (_nmx

otherwise

IV-34

where q_ is the total cross section for this reaction, Nc is the atomic

density of carbon in the scintillator, and E max and Ec_min are the maximum

and minimum possible s-particle energy values. E and E were
_max _min

calculated using the momentum relations assuming that only the neutron is

relativistic. The cross section is then taken as being uniform in the

corresponding energy region. This approximation is reasonable since

_ _ 0.i _C (nonelastic) over the allowed energy region for which the

reaction is possible and the contribution to the total pulse-height

spectrum is small compared to the hydrogen and other carbon reactions.

Figure i0 shows the relative differential cross section for the

cascade reaction plotted by Schuttler sl as a function of the electronic

bias (in light units) for a 2.54-cm. thick scintillator. The detailed

analysis leading to this cross section is given in ref. 20. For the

purpose of this analysis, we derive a standard energy spectrum based on

81Schuttler, op. cit., p. 36.
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the data of Figure i0 which_ when combined with the appropriate effective

_eff . eff
cross section LC = _H_C for the cascade reaction, yields a rough

estimate of the pulse-height spectrum for the cascade reactions.

To obtain the pulse-height spectrum for the interactions of neutrons

of any energy, all that is required is to multiply the ordinate of the

"standard" spectrum shown in Figure ii by the appropriate cross section

eff
from Table I, where Table I gives the values for CC for the reaction

as a function of the neutron energy for two detector thicknesses.

The total spectrum. The final step in the derivation of the total

pulse-height spectrum is to convert the proton and alpha-particle spectra

given by Equations IV-32 and IV-34, respectively_ to light-output units.

The fast light-output curves for protons and alpha particles

plotted as a function of neutron energy are given in Figure 12. These

data are taken from Schuttler s2 and Birks. ss The light output is measured

in terms of an electron which produces the same amount of light as the

charged particle being measured. Converting the energy scale for the

charged-particle reactions to electron-equivalent light output is accGm-

plished directly from these curves. The cross section at each value of F_

however, must be divided by the slope of the light curve where the slope

of the curve is given by Birks s4 for the fast light output as

S2Schuttler, op. cit._ p. 53.

S3Birks, op. cit._ p. 75.

S4Ibid.
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Figure ll. Standard energy spectrum for the carbon cascade

spectrum.



53

TABLE I

_ff *EFFECTIVE CROSS SECTION _ AT EB = 180 keV. e. q.

(MeV.)

eff
ffC (mb.)

For D = 6.1 cm. For D = 2.54 cm.

lO % 94 65

12 128 91

14 187 150

15 207 168

20 319 313

25 326 320

30 334 331

4O$ 310 310

These data are from R. J. Schuttler_ Efficiency of Organic

Scintillators for Fast Neutrons; 0RNL-3888_ July 1966. EB is the bias
setting of the detector discriminator. 180 keV. electron equivalent

(e. q.) corresponds to 1-MeV. neutron energy.

t
Below N7.8 MeV._ the cross section goes to zero.

SFor neutron energies greater than 40 MeV. the cross section is

nominally 310 mb. for both detectors.
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Figure 12. Fast light output for protons and alpha particles.
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dF/d = r_l + . IV-35

B is a constant relating the energy loss of the charged particle to the

light output (the value of B is taken as 0.0140 g. cm. -2 MeV. -I in

obtaining the curves in Figure 12) and dE/dx is the energy lost per unit

pathlength by the charged particle in passage through the scintillator.

When all the spectral data have been converted to electron-

equivalent light-output units (cm.-I MeV_ -I electron equivalent) all that

remains is to add the proton recoil and alpha-particle spectra with the

cascade spectrum. Figure 13 shows the resulting pulse-height spectra for

the interactions of 2- and 14.5-MeV. neutrons in the NE-213 scintillator.

Also shown is the bias setting for I-MeV. neutrons. Plotted for the

purpose of comparison is the 14.5-MeV. spectra determined experimentally

by Love et al. 3s

Conversion to Time Coordinates

The time-slewing response function is obtained by converting the

total pulse-height spectrum to time coordinates using the time-slewing

curve. In this analysis_ we are using the time-slewing curve of Peelle

and his coworkers s6 which is modified to be consistent with the defini-

tions of the neutron flight time discussed in Chapter II. The time-

slewing curve_ shown in Figure 14_ plots the ratio of the pulse height

Or anmc3pTosAhorL°Vf et ale, Absol_t_ Effdc_e_C_MeMeaNeUrements of NE-21_
g " p o--D_-_ct _ g - - V. utrons_ 0RNL-3893,

September 1966.

3eR. W. Peelle _ Differential Cross Sections for the Produc-

tion of Protons in the Reactions of 160-MeV. Protons on Complex Nuclei_

ORNL-3887, September 1966.
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to the time analyzer discriminator trigger level as a function of the

time shift or slewing.

The zero slewing time shown in the figure is taken arbitrarily.

In an experiment, this zero value must be determined specifically for the

detector and instrumentation being used. The "zero" flight time is

initially established from measurements of the apparent flight time of

the highest energy particle available. For experiments of the type being

studied here_ the proton beam is usually used. The time slewing as a

function of the pulse amplitude for constant flight time is then measured

and the zero time slewing is assigned for pulses of the same amplitude

as those occurring during the determination of "zero" flight time.

Converting the pulse-height spectrum to time coordinates is a

straight-forward process. The pulse height (abscissa of Figure 13) is

initially divided by the discriminator bias setting, taken here to be

90 keV._ and the corresponding time slewing is read directly from

Figure 14. The ordinate of the pulse-height spectrum is then multiplied

by the slope of the walk curve where the slope is defined in units of

(MeV./nsec.).

Figure 15 shows the slewing response function for 2- and 14.5-MeV.

neutrons. These data have been normalized to unity consistent with the

definition given by Equation IV-31. The abscissa is in units of time and

the ordinate in reciprocal time units. It should also be noted that both

curves show a maximum slewing time of 4.3 nsec. This corresponds to the

walk at a detector bias setting of 1 MeV. for neutrons (180-keV. electron

equivalent); the value of the bias used in all calculations.
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Figure 15. The time-slewing response functions W[t (h),Vn] for
2- and 14.5-MeV. neutrons as a function of the slewing tim_.
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V. THETIME-ANALYZERRESPONSEFUNCTION

The time-analyzer response functions are the probability that a

neutron of measuredflight time t (see Equation II-5) produces a count
m

in channel k of the multichannel time analyzer. The analyzer response

function is approximated by a rectangular distribution over the width of

a time channel by

i; n <t < n + i_

m
A k (tm ) :

0 ] otherwise

IV-36

where n is the analyzer conversion gain in nsec./channel.

VI. INTEGRALS LEADING TO THE TIME-CHANNEL RESPONSE FUNCTION

The probability per MeV. of neutron energy per incident proton that

a neutron of speed v is detected in channel k of the multichannel time
n

analyzer is the time-channel response function and is given by the

expression

Sk(Vp]Vn'8) = _t
m

Ak(tm) T(Vp;Vn, tm) dt m IV-37

where Ak(tm)are the time-analyzer response functions and T(Vp;Vn, tm) dt m

is the probability per incident proton per MeV. of neutron energy that a

neutron of speed v has a measured flight time within dt at t .
n m m

T(Vp;Vn, tm) is obtained from the convolution of the flight-time
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distribution of detected neutrons averaged over the target volume,

C(Vp;Vn_ti) _ and the time-slewing response function_ W[tw(h)_Vn] _ given by

T(Vp;V n,t m) = ,It. C(Vp;Vn't i) W(t m - ti, vn) dt i ,
l

IV-38

where t (h) = t - t. from Equations II-5 and IV-13.
w m 1

The summation of Sk(Vp;Vn, e ) over all the time channels yields

the average detector efficiency CD(Vn) times the number of neutrons which

strike the detector given by Equation IV-30. With the aid of Equation

IV-36, we can write Equation IV-37 as

k k
i • T(Vp;Vn, tm) dt m IV-39

Using the same arguments which led to Equation IV-21, it can be shown that

_t T(Vp;Vn'tm) dtm = _t. C(Vp;Vn'ti) dti
m 1

IV-4o

Introducing the results Zrom Section III for the integral of C(Vp;Vn, ti)

over the jitter-smeared flight time, we obtain the result

e = [l____]eff
Z Sk(VpjVn _ ) eD(Vn)_ (VpjVn_e)[_ -k P LzTpJ

_eff S]-ZTP

e |_o " IV-41
J



CHAPTER V

COMPUTATION OF THE TIME-CHANNEL RESPONSE FUNCTION

The equations leading to the time channel response function dis-

cussed in Chapter IV are sufficiently complex that a computer was required

to facilitate the computations. Four computer programs were written, each

designed to complete a separate phase of the analysis. These programs are

discussed briefly in Figure 16 which shows_ in block diagram, how they are

combined to produce the desired response functiohs. In this chapter, the

methods of analysis used in each program will be discussed along with some

of the particular calculations which are necessary to understand the solu-

tion of the problem. The specific details and descriptions of the programs

and instructions for their use are given elsewhere, sv

I. THE NUMERICAL CALCULATION OF THE JITTER-SMEARED PHYSICAL

FLIGHT-TIME DISTRIBUTION OF DETECTED NEUTRONS

The numerical calculation of the jitter-smeared physical flight-

time distribution was accomplished by completing the integration shown in

Equation IV-15 and evaluating the results at values of ti for which the

distribution is nonzero. The integration was performed using Gaussian

quadratures with all computations being performed on a Control Data

Corporation 1604 Computer.

SVR. T. Santoro, A Fortran Program for Calculating the Time

Channel Response Fanction in Neutron Time-of-Flight Spectroscopy_

to be published.

62
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PTIME

Calculates the jitter-smeared

physical flight-time distribution

averaged over the target _iven by

Equation IV-15). The program also

calculates the detector efficiency_

flight-time resolution_ and the

variance of the distribution about

the mean flight time_ t.. The

results are also plotteR. Punched

cards with values of C(v ;Vn_ti)p -
and t. are produced.

l

TWALK

Calculates the pulse-height

spectrum and the time-slewing

response function. The

program produces punched card

output of W[tw(h),Vn_ and tw(h ).

Performs the convolution of

C(Vp;Vn_ ti) with W[tw(h)_ Vn_

l
A_NALYZ

Produces the time-channel

response functions

Sk(Vp;Vn_ O)

Figure 16. Block diagram and description of the computer

programs for calculating the time-channel response function.
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Detailed discussions of the Gaussian quadrature procedure are given

by Lanczos 38 and Kou. 39 This method of integration was chosen since it

yields an accurate approximation to the integral and requires fewer com-

putational steps than other methods. In this section, we shall discuss

the more important aspects of the calculations and some of the criteria

used to evaluate the results.

Tabulation of Cross Sections

The calculations made in this analysis were based on the use of a

carbon target and an NE-213 scintillator. The assumption was made that

the effective macroscopic cross section for neutron absorption in the

target is zero. For thin targets, in which the neutron mean free path is

much greater than the distance travelled by the neutron from the (p,n)

interaction point to the point of exit from the target, the assumption is

quite reasonable. For example, for 2-MeV. neutrons the total cross section

for carbon is _1.7 b. and the corresponding mean free path is N7.5 cm.

The effective macroscopic cross section for neutrons in the

detector was obtained from

Z_ ff V-I= NH_ H + Nc_c, ne ,

where NH and N c are the atomic densities of hydrogen and carbon in the

detector, _H is the microscopic total cross section for hydrogen# and

o_C__SNeI_wn_yAp_ _p_.l_!4_ol_.entice Hall, Inc._Englew

39 Shan S. Kuo, Numerical Methods and Computers_ (Addison-Wesleyj

Reading, _ssachusetts, 1965), pp. 239-252.
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is the nonelastic microscopic cross section for carbon. Table II
_C_ ne

lists the values for a H and _C, ne over the range of neutron energies from

2 to i00 MeV.

The macroscopic efficiency cross section _(Vn) was taken from

Schuttler. 4° These data are based on first collision calculations of the

detector efficiency for bias values of 180-keV. electron equivalent. This

corresponds to i MeV. for neutrons. Schuttler's data extend up to 50 MeV.

For higher neutron energies_ the efficiency cross section was inferred

from the total hydrogen and carbon cross sections. Figure 17 is a curve

of E(Vn) versus neutron energy. Also shown in the figure are macroscopic

cross sections for hydrogen and carbon which contribute to the efficiency

cross section.

The macroscopic absorption cross section for protons in the target

zeff

TP was estimated using the nonelastic cross section for neutrons in

carbon from the data of Bertini. _I eff
_TP was taken as 233 mb. This value

compares favorably with the value given by Voos and Wilson of 225 mb. 42

Reduction of the Integral to Quadratures

The evaluation of Equation IV-15 requires the solution of a four-

fold integral evaluated at the values of the jitter-smeared apparent flight-

times t. for which the distribution is nonzero. The range of flight timesi

for which the distribution is nonzero is implied by the conditions of

4°R. S. Schuttler_ Efficiency of Organic Scintillators to Fast

Neutrons_ ORNL-3888_ July 1966.

41H. Bertini, Phys. Rev. _ 1801 (1963).

42R. G. P. Voos and R. Wilson_ Proc. Roy. Soc. (Londonl_ A236_
41 (1956).
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TABLE II

VALUES OF _H AND_c, ne FOR 2 < i_F_"< i00 MeV.

* t
EN _H _C, ne

MeV. barn barn

2 2.9o 1.72

5 1.63 1.15

io o.94 o.64

15 o.65 o.87

20 o.48 1.o4

25 o.38 o.92

30 o.31 o .87

35 o.26 o.82

40 o.22 o. 76

50 o .17 o .64

60 o.13 o.53

70 O.lO o.43

8o o.o9 o.35

9o o.o8 o.3o

i00 0.07 0.26

Neutron Cross Sections_ BNL-325, Second Edition, Brookhaven

National Laboratory, February 1966.

t M. Ealos and H. Goldstein, Neutron Cross-Section Data for

Carbon_ NDA 12-16 (1956).
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Equation IV-4. The values of t. used in the evaluation of the integral
1

were determined from the extremum flight paths for the neutron for the

particular target-detector geometry being studied. The minimum and

= (Zf)min/V - 2 andmaximum flight times were defined by (ti)mi n n .5_j

= and (_f)max are the extremum(ti)ma x (Zf)max/Vn + 2.5_j where (Zf)mi n

flight paths for the neutron between the target and the detector and _j

is standard deviation of the jitter distribution. The addition and

subtraction of 2.5_j insures that the values of t i are defined well into

the region of the tails of the jitter smeared distribution. The time

mesh was then taken in equal intervals between (ti)min and (ti)max.

The integral over the face of the detector was evaluated by

expressing the element of detector area in terms of the cylindrical

coordinates on the face of the detector. Then

dA D = pdpdo` V-2

where p and dp are the radial components and do` is the element of azimuthal

angle. The integration over the face of the detector was broken down into

two regions in order to take into account the effects of the detector

edges. The contributions to the flight-time distribution were then added

according to their respective weights and the integral was evaluated over

o` as follows

2 J'- 12'J'opd dc,= 2 "['-,,/2do, pdp+ pdpo )
v-3
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where % is the value of the radius for which the projected flight-path

of the neutron along _ just intercepts the point where the rear surface

and the cylindrical surface intersect. The factor of two in the

integration is required since the integrals are evaluated over half of

the detector. The integration over the target volume is straight-

forward; the limits of integration for x and y being given previously

by Equations IV-28 and IV-29.

The most tedious problem faced in computing the results was the

determination of the proper number of quadrature points required in the

integration. This was accomplished in several ways. First_ the results

were normalized to the calculated area under the Gaussian beam distribu-

tion; the area being evaluated using the same number of quadrature points

as in the integral over y. This procedure reduced the sensitivity of the

distribution to the number of quadrature points in y. Then, the area of

the detector face was inspected for a given number of quadrature points

in p and _. If the computed area was the same as the known area of the

detector face_ the computation was allowed to proceed.

These steps_ however_ did not always yield the optimum approxima-

tion to the solution of the equation. The use of very narrow jitter

• was small compared to At._ sometimes required
distributions_ where _3 l

a larger number of quadrature points and/or a tighter time mesh. Often_

the best results were reached by trial and error and the correct number

of quadrature points was determined when the value for the integral

converged and increasing the number of points no longer affected the

results.
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Testing the Validity of the Results

After inspecting the results to insure that the solution to the

integral had converged, the resulting jitter-smeared flight-time

distribution was integrated over all values of t. to obtain the detector
i

efficiency. The solution was assumed correct if the efficiency calcu-

lated in this manner compared to the efficiency calculated from

Equation IV-23. This equation was computed using the values for the

maximum and minimum flight times used to obtain the distribution.

II. NUMERICAL CALCULATION OF T(Vp;Vn, tm)

The jitter-smeared physical flight-time distribution and the

time-slewing response function were convoluted as shown in Equation

IV-38 using trapezoidal quadratures in Program C_NV_L. In this calcu-

lation, the time-slewing distribution was divided into equal time

intervals such that the initial and final time-slewing values formed

the upper and lower time limits. The physical flight-time distribution

was then divided into intervals of the same size. Forming the intervals

in this manner insured that the edges of the time-slewing distribution

(see Figure 15) were properly represented in the quadrature.
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III. INTERPOLATIONANDENTABULATION

In this analysis_ we have madewide use of the TERPcode of

Putzulu et al. 4s This code enables the user to make rapid accurate

numerical approximations to functions which are not normally provided

in the computer library.

All of the cross-section curves and tables of the error function

were approximated using this system. The system yields specific values

for these approximated functions by parabolic interpolation within the

tabulated values supplied to the system.

4SD. T. Putzulu_ P. Aebersold_ and W. R. Burrus_ Description of

the TERP System_ A Fortran II/63;IV/63_ 360 System for Efficient

Interpolation_ ORNL-TM-1706 (December 8_ 1966).



CHAPTERVI

_S_TS

In this chapter, we shall present sometypical results from the

numerical solutions of the equations presented in the preceeding chapters.

Somecharacteristic jitter smearedphysical flight-time distributions of

detected neutrons averaged over the target will be illustrated for the

interactions in the detector of 2-, 14.5-, and IO0-MeV. neutrons and the

effects on these distributions arising from the instrumental time jitter

will be demonstrated.

Comparisonswill be madebetween the maximumflight-time uncer-

tainties induced by the target and detector dimensions using the equations

derived in Chapter III and the uncertainties predicted by the computed

flight-time distributions for the sameconditions. Finally_ the effects

on the flight-time distributions arising from the convolution with the

time-slewing response function will be discussed and sometypical time-

channel response functions will be presented.

I. COMPUTEDPHYSICALFLIGHT-TIMEDISTRIBUTIONS

The physical flight-time distributions for detected neutrons

averaged over the target were obtained from the numerical integration of

Equation IV-15. For the purpose of this analysis_ the target-detector

configuration and parameters summarizedin Table III were chosen to

demonstrate the results; these parameters typifying a practical choice

72
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TABLE III

PARAMETERS USED IN COMPUTING THE PHYSICAL

FLIGHT-TIME DISTRIBUTION

Proton Beam

EN = 160 MeV.

= 0.25 cm.

Target Orientation

Composition

Thickness (T)

Rotation Angle (y)

T + T

Carbon

0.5 cm.

30 °

0

Detector Parameters

Normal Distance from x = y = z = 0 to the

Face of the Detector (L)

Neutron Scattering Angle (8)

Thickness (D)

Radius

Index of Refraction (K)

70 cm.

60°

6.01 cm.

6.0 cm.

1.43

Based on measured values used in the parent experiment.

See R. T. Santoro_ The Space_ Time_ and Energy Distributions

of the Proton Beam of the Harvard University Synchrocyclotron_

ORNL-3722 (January 1965).
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in the light of possible experimental arrangements for the target and

detector.

The distributions were approximated using four-point Gaussian

quadratures in x, y_ p, and _ with a 40-point mesh in t. for secondary
1

neutron energies of 2-, 14.5-, and 100-MeV. The results of the computa-

tion are shown in Figure 18 for the cases where _j = 0.43 and 0.86 nsec.

The abscissa gives the jitter smeared apparent physical flight time and

the ordinate is the probability per incident proton per MeV. of neutron

energy that a secondary neutron of speed v has an apparent jitter
n

smeared flight time per nsec. at t.. The ordinate values have been
m

divided by the effective target thickness, the detector solid angle, and

Zp(Vp;Vn, e ). The resulting distributions have been normalized to the

computed area under the beam distribution.

All of the distributions with the exception of the one computed

for 2-MeV. neutrons with _. = 0.43 nsec. are essentially Gaussian in
J

nature with the chief contribution to the time spread arising from the

instrumental jitter. For example, at14.5 MeV, the mean flight time for

the neutrons over the 70-cm. flight path is 14.15 nsec. The resolution

time assuming only presence of the jitter is 7.1% and 14.2% when _. = 0.43
J

and 0.86 nsec., respectively.

For the single case where E = 2.0 MeV. with _. = 0.43 nsec. the
n j

shape of the distribution is obviously different. The sloping character

of the top edge of the distribution is the result of neutron attenuation

in the detector; the attenuation being of the order of e-'s4 •
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The results of these calculations are summarized further in Table IV.

The detection efficiencies, obtained from the integral of the flight-time

distribution over the range of flight times, are compared to the experi-

mental values of Love et al._ 44 for a detector of approximately the same

size. The differences in the values listed result primarily from the

single scattering approximation used in this calculation to estimate the

pulse-height spectrum.

Improving the timing resolution for the configuration may be

accomplished by increasing the flight path. For example, for L = 200 cm.,

the overall timing resolution reduces by a factor of 2.7 which corresponds

approximately to the increase in the flight time. There is_ however, a

corresponding decrease in the system efficiency arising from the reduction

in solid angle subtended by the detector, and increased counting times

would be required to gain comparable statistical accuracy in experimental

data.

It should also be noted that the values for the geometric resolu-

tion given in Table IV differ. This arises since the jitter was sub-

tracted in quadrature. This technique does not represent a precise

way of eliminating this effect.

II. COMPARISONS WITH CALCULATED FLIGHT-TIME UNCERTAINTIES

The maximum relative flight-time uncertainties introduced by the

target and detector dimensions were calculated in Chapter III under the

44T. A. Love et al_ Absolute Efficiency Measurements of NE-213

Organic Phosphors for Detectin_ 14.4- and 2.6-MeV. Neutrons_ ORNL-3893,

September 1966.
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TABLE IV

RESULTS FROM THE COMPUTATION OF

C (Vp]Vm, ti )/[_ Teff _'p(Vp;Vn_ O )]

VERSUS t.
1

EN (ti) FWHM GFWHM t Total Time Geometric
Resolution Resolution

(MeV.) (nse_.) (nsec.) (nsec.) (%) (%)

c. : 0.43 nsec.
J

2 97.3 2.51 2.29 6.7 6.1

14.5 14.1 1.19 0.63 8.5 4.5

i00 5-8 1.02 0.13 17.5 2.3

C. : 0.86 nsec.
J

2 37.3 2.92 2.11 7.8 5.7

14.5 14.1 2.11 0.61 15.0 4.3

i00 5.8 2.03 O. 15 34.8 2.5

Computed Efficienc_ Zero Bias

(MeV.) Efficiency from Love* Efficiency**

2 28.5 38.5 56.9

14.5 18.1 22.6 27.8

1GO 6.5 7.2

FWHM is full width at half maximum.

*o_ is [(mmMf - (2.354 x _j f]i/2.

ST. A. Love et al Absolute Efficiency Measurements of NE-213

Organic Phosphors for Detecting 14.4- and 2.6-MeV. Neutrons; ORNL-3893_
September 1966.

These data are the same for c. : 0.43 and c. = 0.86.
J J

k_,'_L_..r-u_r_ PAGE NOT FiL_ED.
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assumption that all the dimensions have negligible effect except the one

being evaluated. In order to approximate these same conditions in the

computation of the physical flight-time distributions for a given dominant

target or detector dimension_ the remaining dimensions were made suffi-

ciently small that their combined contribution to the flight-time

distribution was small. The computer program logic prohibited their

being set equal to zero.

The numerical calculation of C(Vp;Vn, ti) is dependent on the

existence of some fraction of instrumental time jitter. Recalling

Equation IV-15_ we note that _j, the standard deviation of the jitter

distribution_ enters the calculation of the flight-time distribution

principally through the evaluation of the two error functions. For _j

approaching zero_ the difference between the error functions varies

between 0 and i for combinations of quadrature points in the target and

detector and the computed flight-time distribution "oscillates" with t.l

Since it is not possible then to use zero jitter_ _j was made sufficiently

small that the full width of the jitter distribution was small compared

to the full width at half maximum (FWHM) of the underlying "geometric"

• used in a
component of the flight-time distribution. The value of _j

given calculation was determined from estimates of the difference in the

maximum and minimum flight times along a given direction Q. If the range

of neutron flight times were such that the value of (tma x - ti)/_ j and

(tmi n - ti)/_ j were greater than 4.215, the difference in the error

function was zero and the distribution goes to zero over this time

region. Since the numerical calculation of the physical flight-time
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distribution is sensitive to _j, the optimum value was often determined

by observing the behavior of C(Vp;Vn, ti) as a function of

Figure 19 shows the flight-time resolution, (At/t) induced by the

detector geometry as a function of R_L and D/L. The flight-time resolu-

tion was obtained from the ratio of the full width of half maximum (FW_)

to the calculated mean flight time_ _i' of the distribution; the instru-

mental timing resolution component having been removed.

Eliminating the effects of the jitter was accomplished in two ways.

If the width of the jitter distribution, given by 2.36 _j, was less than

10% of the width of the combined jitter and geometric distributions, it

was subtracted in quadrature. This method gives an imperfect result

since the "geometric" component of the distribution is rectangular rather

than Gaussian.

The rectangular shaped distribution arises, in the case of the

detector thickness_ for the following reasons. In the absence of any

neutron attenuation and with insignificant target dimensions, the

probability for neutron detection given by Equation IV-4 reduces to

dt l(t, Vn,_ ) = _(Vn) d%D(t) • VI-I

For £D(t) inconsistent with neutron detection in the detector, l[t,Vn,C )

is zero. Otherwise, I is proportional to Z(Vn) for all values of _D(t)

and the resulting distribution is flat across the range of allowed values

of t. When the neutron attenuation cross section is introduced, the

rectangular-shaped distributions reduces to a trapezoid as shown in
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Figure 20. For this case_ the detector thickness is i0 cm. and the

attenuation is of the order of e-I"_ which produces the rapid drop off

in the upper ed,_eof the distribution.

• is small comparedto the overall width of C(Vp;Vn,ti)When2.35 _j

the error introduced by quadratic subtraction does not seriously affect

the final answer; about 0.25% for the case shown in Figure 20. For those

cases where 10%< 2.35 _j/FWHM < 37%, the effects of the jitter were

removed using mathematical techniques proposed by Kalisz _5 to determine

the resolving time of a coincidence circuit from empirical coincidence

curve s.

Provided the flight-time distribution is rectangular_ we can write

qi : ci/gZ4}Z4 VI-2

where

_i = the standard deviation of the instrumental
time jitter distribution_

974HM= the full width at half maximum of the computed

flight-time distribution.

Kalisz has tabulated the relationship between q_ and T , where 2(FWHM)T*
i

is the full width at half height of the true distribution corrected for

the effects of smearing by a Gaussian distribution.

4s J6sef Kalisz_ A Method for Determination of the Resolving Time

and Efficiency of the Coincidence Circuit on the Basis of a Single

Em_irica! Delayed Coincidence Curve_ Institute of Nuclear Research_

Warsaw_ Report INRNo. 652/IA/PL_ September 1965.
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If the value of 2.35 _j/FWHM> 35%, the data was usually not

considered valid and the case was re-evaluated using a smaller value for

_..

J

We observe from Figure 19 that the computed values for the timing

resolution_ given by the data points_ are in excellent agreement with

the value predicted by the analytic expressions from Chapter III; the

latter being given by the bold lines. For values of D/L > 5 × 10-2 we

observe that the 2- and 14.5-MeV. points begin to drop away from the curve

This apparent reduction in (At/t) is due chiefly to the method of computing

the FWHM of the distribution. In all cases the FWHMwas defined con-

ventionally and_ as can be seen from Figure 20_ the width is small compared

to the total width of the distribution. For the thick detector cases in

which the shape is heavily influenced by the effects of neutron attenua-

tion_ observation of the actual predicted time distribution indicates

no real discrepancy with the maximum flight-time distributions.

The computed points for D/L fall slightly below the lines. This

results since the lines were plotted using the equations derived in

Chapter II in which the flight (At/t) is defined in terms of t = L/v
n

where L is the normal distance from the origin of the target coordinate

system to the face of the detector. The computed values for (&t/t) were

obtained using the mean flight time.

Also plotted in Figure 19 is the flight-time resolution as a

function of R_L. The agreement between the data is excellent in the

region R_L _ 5 × i_ s • Since the timing resolution is a function only

of the radius and not the neutron energy_ the points fall together as
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expected. As in the case of the detector thickness_ the flight-time

distribution is almost rectangular. There is_ however, a fall off in

the top of the distribution which is inversely proportional to the

flight time. This behavior in the shape of the distribution is pre-

dicted by the analytic results when Equation IV-5 is integrated over

all values of _f for a given flight time, t.. This integration isl

performed asuming the target dimensions, and detector thickness were

negligible in extent.

When _L < 6 × lO-S_ the effects of the detector thickness used

in the computation begin to dominate as shown by the open points.

Figure 21 shows the flight-time resolution induced by the target

thickness plotted as a function of T secY/L. The agreement between the

computed values of (At/t)_ given by the points, and those predicted

using the equation shown in the figure is favorable. (The reader is

referred to Section II_ Chapter III for the detailed calculation leading

to this equation.) As shown in the figure_ some of the computed points

have been corrected for the dominant detector contribution to the flight-

time _esolution by subtracting these effects in quadrature.

It is interesting to note the reversal in the expected flight-

time resolution with increasing neutron energy. For this combination of

target and detector angles (Y = 30 ° and e = 60°)_ the extremum edges of

the target can be used to approximate the maximnm f_ight-time uncertainties

for all neutron energies except for the particular case when cos 60 ° =

Vn/V p. For this energy_ the maximum flight time must be approximated

using Equation III-15 et seq.
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versus T see Y/L.

and y = 30 °.

The flight-time resolution induced by target thickness

For 2-_ 14.5-_ and IO0-MeV. neutrons with e = 60 °
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Figure 22 shows the shape of the computed distribution when

T secy = 2.31 cm., L = 70-cm., and EN = 2 MeV. The time jitter comprises

a significant portion of the total distribution. Since the distribution

is rectangular_ the effect of jitter may be removed using the Ealisz

method. The FWHM is 0.433 nsec. and _. = 0.i nsec. The resulting
J

"geometric" distribution obtained using the Kalisz method 0.432 nsec.,

while subtraction of _. in quadrature yields 0.364 nsec.; about a 20%
J

variation.

The comparison of the flight-time resolution is a function of the

target radius reGuires a slightly different approach. In the derivation

of the maximum flight-time uncertainties arising from the target radius,

we assumed uniform beam density over the target radius. However_ in

deriving C(Vp;Vn, ti) , we assumed that, in the absence of multiple scat-

tering of the protons, the target radius corresponded to the radial

dimension of the beam. The beam density was approximated by a Gaussian

distribution in the x-z plane. In the numerical integration leading to

C(Vp;Vn, ti) , the limits for the y integral were defined by y = _2.5a_

where _ is the standard deviation of the beam distribution.

To demonstrate the effects on the flight-time distribution of the

target radius_ we must introduce a different, but consistent, notation

into the equations for leading to (At/t)R T given in Chapter III.

The "radius" of the target was approximated by the FWHMof the

beam distribution. Considering the rotation angle y, the effective

target radius was defined by

(RT)ef f = 1.18a secy = ay - VI-3
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Equation III-20 may now be written with _" replacing RT.
Y

Figure 23 shows the flight-time resolution as a function of c'/L.
Y

The points give the computed values for (At/t) obtained from the flight-

time distribution while the lines were obtained using Equation 111-20.

For these cases_ the instrumental jitter was subtracted in quadrature

since the underlying "geometric" distribution is Gaussian.

In the numerical computation leading to Figure 23 the integration

over the p coordinate of the detector was performed on the rear face

of the detector. For the small detector used in these studies_ the

uncertainty in the final results due to the edge effects is negligible.

IIl. THE EFFECTS OF TIME SLEWING AND

THE TIME-CHANNEL RESPONSE FUNCTION

Figure 24 shows the effects of the time slewing on the physical

flight-time distribution for 14.5-MeV. neutrons obtained in Section I

of this chapter. These data were obtained from Equation IV-38 using

the time-slewing response function for 14.5-MeV. neutrons given in

Figure 15.

Comparing the flight-time distribution from Figure 18 with these

data_ we observe significant broadening the original distribution in

time with a corresponding truncation of the amplitude. The integral

over the measured flight time t yields the efficiency of the detector
m

obtained in Table IV.
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Figure 24. The probability per nsec. per incident proton per

MeV. of neutron energy that a neutron has a measured flight time at tm

versus tm, the measured flight time.
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Figure 25 shows the time-channel response functions obtained from

the slewing-smeared distribution in Figure 24. These response functions

are obtained from Equation IV-37 using an analyzer calibration of

0.500 nsec./channel. The values obtained in this analysis are compared

with the experimental points of Love et al. 46 for approximately 14-MeV.

neutrons at a flight path of 40 cm. The experimental data were

normalized as well as possible for the differences in the flight path

and the analyzer .calibration.

_6Love_ op. cit., p. 22.
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Figure 25. The time-channel response functions for 14.5-MeV.
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APPENDIXA

CALCULATIONOFt : THEINTERVALFROMTIMEZEROTO
P

(p,n) INTERACTIONIN TEETARGET

The time spent by the proton in the target is given by the relation

dx
tp = _Z Vp-_+ te

P

A-I

where

dx = the incremental distance travelled by the proton in
the target,

v (x) = the proton velocity at the distance x in the target,
P and

t
e

= the time required for the proton to travel from the

plane passing through x = 0 to the entrance face of

the target at velocity v . (te is usually a negative
number.) P

The proton loses energy in the target through numerous atomic

collisions. Its flight time through the target is a function of the

incremental energy loss per cm., dE/dx. In the nonrelativistic approx-

imation, the proton energy is given by the familiar equation E =
P

(1/2) my_ . Differentiating with respect to x we obtain
P

-- mVp (-dVpl ) . A-2

98
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(-dE/dx) is a positive number; the minus implying a decrease in energy

with increasing x. Expanding v-_ (x) in a Taylor series gives
P

= - x) (dVp/ )+ ....P P
A-3

Substituting dVp/dX from F_uation A-2 into A-3 and introducing

the result into Equation A-I gives

t
P 0 v ep mya 0

P

A-4

is the proton penetration depth prior to the (p-n) interaction given
P

by Equation II-3. Noting that my_ = 2v E and completing the integration_
P PP

we obtain the result

t = -_ + _ (-dE/d-x) + tp V e
P PP

A-5

The convention was adopted that the zero of time for a proton is

at the instant it would have passed through the plane x = 0 if the target

were absent. Then,

x -£
_ ______t -

e v

P

A-6



i00 , .

Substituting this result into Equation A-5 yields

%2

x + _-_ (-_I_)tp - 7
P PP

A-7



APPENDIX B

CA C TION OF (i"•5), AND

The quantities (_" • _), _f, and ZT introduced in Chapter IV in the

analysis leading to the physical flight-time distribution of detected

neutrons will be derived here in terms of the known quantities L, x_ y_

y _ z _ e_ _ TI_ and T2.

A

I. THE DERIVATION OF %f and (i" • _)

The distance travelled by the neutron from its birth point in

the target to the face of the detector is %f. Introducing_ and y_

the target interaction coordinates in a coordinate system rotated

through an angle e in the x-y plan%

N

x = x cose + y sine

y = y cose - x sine
B-1

we can write the cartesian components of _ in the rotated coordinate

system as

N

_ ,=L-x
X

f)y• = y -y

f) • =z
z

B-2

i01



102

if we makethe identification

i_i= _f •

It follows from the Pythagorean Theorem that

%f =_/ (L- _')_ + (y" _ _'_ + (z'_ B-3

(_" • _) is the cosine of the direction angle of _ relative to the x'-

coordinate system. From B-2_

B-4

It can be shown from similar arguments

^ _.,

(J" .&)= J • __ __L_=__
%f - £f

(k_ . _) = _ • _=z_"

£f Zf

B-5
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II. DERIVATION OF ZT_ the PATBLENGTH OF THE

SECONDARY NEUTRON IN THE TARGET

The length of _T is dependent on the target-detector orientation

and separate calculations are required for the target in transmission_

18 - Y1 < _/2_ and in reflection le - _I > _/2.

The Target in Transmission

Neutrons born in the target at PT are emitted at an angle ® with

respect to the proton beam axis. ZT is obtained from the normal equation

of the plane of the exit face of the target. According to this equation_

oos :ION[

where ON is the normal from PT to the exit face and _ is the angle

between O-N and _. The length of ON is

10NI = _2 - x cosY-y sinY • B-7

cos_ is obtained from the equation

cos_ = cos% cost + cos_ cos_ + cosA cos_2
B-8

where (_iFl) are the direction angles of _T and (o_7_) those of 0-_;

all angles being measured relative to (x'y'z') along the direction
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its direction cosines are given by Equations B-4 and B-5. The direction

cosines for ON are given by

i _, F_

cos_ = ON • i = cos_ - _)
1

f t.
cos% : ON " J : sin(y - 8) B-9

cosT_= 69 • _" : o

where @ is the unit vector along 0-_. _ " k" : 0 since ON is constrained

to the x-y plane. Then Equation B-6 can be written

ZT=

(_s secY - x - y tanY) cosy

L"-_cos(e _ y) y" _
f _'f

B-lO

which gives the magnitude of ZT for the target in transmission.

Target in Reflection

When 18 - YI > _/2, the derivation for %T follows the same

procedure. In this case_ IONI is given by %p cosy where Zp is given by

Equation II-3. Then,

_T =

(x + y tany - Tl secy) cosy

L - _ (8 Y)- _" - Y sin(8 - Y)]_f cos - Zf ]

B-11

for the target in reflection.
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